BIOREDUCTION WITH BAKERS' YEAST OF π - DEFICIENT HETEROCYCLIC ALDEHYDES

Florin Dan IRIMIE, Cerasella AFLOROAEI*, Monica TOŞA, Csaba PAIZS, "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11 street, 3400 Cluj, Romania

Abstract: The reduction of a few π -deficient heterocyclic aldehydes by bakers' yeast *(Saccharomyces cerevisiae)* is presented. The structure of alcohols such obtained have been supported by spectral and elemental analysis.

Introduction

Biocatalytic reductions are achieved by the first class of enzymes, e.g. the oxidoreductases which catalyze reactions of reduction and oxidation, specifically removal or addition of hydrogen. The common bakers' yeast (*Saccharomyces cerevisiae*), a microorganism that can be used for such purpose is more available than purified reductases that have the disadvantage to need expensive cofactors like NADH or NADPH.

Literature data ¹⁻³ show that this reagent was seldom used for reduction of aliphatic 4,5 , aromatic ⁶, organometallic^{7,8} or heterocyclic ⁹ aldehydes.

Due to the fact that heterocyclic alcohols show potential drug activity ¹⁰ we tried to obtain these compounds by reduction of the corresponding aldehydes using bakers' yeast.

Results and discussion

Using bakers' yeast reduction, we succeeded in obtaining a few known hydroxymethyl derivatives of acridine, pyridine, quinoline and three news compounds 2b, 2e and 2f (see Scheme).

Experimental results are collected in Table. The heterocyclic hydroxymethanols were prepared by classical reduction procedures of corresponding carboxylic acids, aldehydes, nitriles, esters, using metal complex hydrides^{15-20,} or microbiological methods²¹. N-hydroxyalkylation of heterocycles with R'CH₂OH (R'= H, or alkyl) in the presence of oxidizing agent is a rather general method for preparing this type of compounds.²²

	and the second sec					
Com-	Reaction	Yield [yield in	m.p./ b.p.	Mass spectra	['] H NMR	IR
pound	time	classical	[lit. m.p./ b.p.]	m/z	(δ ,ppm)	Ve-on
	(h)	method]	(⁰ C)			cm ⁻¹
		(%)				
2a	24	82 [41(1)]	m.p. 164-165		3.80,s	1050
			[164 desc.(11)]		(CH ₂ OH)	
2b	24	80	m.p.159-160		3.95,s	1040
			[159 (12)]		(CH ₂ OH)	
2c	48	60 [41-50.4	b.p.152-		4.70,s	1030
		(14, 15)]	154/28mm		(C <u>H</u> ₂OH)	
			[154/28mm			
			(13)]			
2d	48	50 [23-	m.p. 98-99		4.00,s	1030
		72(18,17)]	[99-100 (16)]		(CH ₂ OH)	
2e	28	74	m.p. 132-134	243 M ⁺ , 228	4.60, s	1060
				(M ⁺ -15), 212	(CH ₂ OH)	
				(M ⁺ - 31), 198.	1.60, s	
					(N-CH ₃)	
2f	48	83	m.p.91-93	257 M ⁺ , 228	1.45, t	1020
				(M ⁺ -29), 225	(CH ₃ CH ₂ N)	
				(M ⁺ -31), 198	3.90, q	
					(CH ₃ CH ₂ N)	
					4.60, s	
					(CH ₂ OH)	

Table. π -Deficient heterocyclic alcohols prepared by reduction of corresponding aldehydes with bakers'yeast.

Thus, the bioreduction was carried out according to the following reaction schemes:

Carbohydrates (saccharose, glucose) were used as feeding substrates in the presence of various amount of yeast. The drawback of these carbohydrates is that they are metabolized rapidly

by yeast before the reduction, causing important release of CO_2 with rapid acidification of the medium. But, in the range of molar ratio in which reaction was carried out, the quantity of CO_2 released did not modify the optimum pH range $(4.0 - 7.0)^{23}$.

Comparatively with the classical methods, which are in general material consuming (expensive reagents, dry solvents) bakers' yeast allows to carry out reduction a quite simple installation, at room temperature, with an easy work-up of products and good yields.

Experimental

9-Formil-acridine and formil-phenothiazine derivatives were prepared according to the literature data.^{24,25} Chinolin-4-carboxaldehyde and pyridin-3-aldehyde were obtained from Aldrich.

M.p. are given uncorrected. IR spectra were recorded in KBr pellets on a CARL ZEISS JENA UR 20 spectrophotometer. The mass spectra were recorded on a double focusing VARIAN MATT 311 spectrometer, with an electron impact source of 70 eV and 300 mA. The ¹H-NMR spectra were recorded with a VARIAN GEMINI-300 MHz instrument using DMSO-d₆ as solvent and TMS as internal standard. TLC analyses were run on plates covered with silica gel, eluted with benzene:ether (8:2, v/v), excepting for phenothiazine compounds, with which a mixture of toluene : acetone (9:1, v/v), was used, and visualized with iodine. Elemental analyses for C,N and H were within $\pm 0.4\%$ of the theoretical values for the new compounds.

General procedure for reduction

Fresh bakers' yeast (100 g) and saccharose or glucose (4 g) was put into water (200 ml), and the suspension was stirred for 30 minutes. The heterocyclic aldehyde (2 mmol) was separately dissolved into ethanol (50 ml) and ethanolic solution poured into bakers' yeast suspension. The resulting mixture was filled in with water until 1 litre and magnetically stirred for a period of time (specified in the Table).

After that, benzene (100 ml) and ethylacetate (200 ml) were added for extraction of the reaction product; the stirring was continued for two hours. Subsequently, organic and aqueous layers were separated. The organic layer was filtered, dried on Na_2SO_4 sicc., and rotavaporated. The residue was work-up in a specific manner for each compound. Thus, 9-hydroxymethyl-acridine was purified by maceration with petroleum ether when a yellow-green precipitated was obtained. 9-Hydroxymethyl-2-methyl-acridine was obtained pure after evaporation of the organic

solvent; 3-hydroxymethyl-10-methyl phenothiazine was obtained as an oil, which was solidified by maceration with petroleum ether; 3-hydroxymethyl-10-ethyl phenothiazine was also separated as oil which solidified after purified by distillation <u>in vacuo</u>; 4-hydroxymethyl - quinoline was crystallized by maceration with hexane. Compounds were recrystallized from ethanol or obtained by vacuum distillation.

IV References

- (1) S. Servi, Synthesis, 1 (1990)
- (2) R. Csuk and B. I. Glanzer, Chem.Rev. <u>91</u>, 49 (1991).
- (3) E.Santaniello, P. Ferraboschi, P.Grisenti and A. Manzocchi, Chem.Rev. <u>92</u>, 1071(1992).
- (4) J. Eurel, F.Giovannini, B. Lamatschi, and D. Subach, Chemia <u>40</u>, 172 (1986)
- (5) M. F. Zuger, F. Giovannini, and D. Subach, Angew. Chem. <u>95</u>, 1024 (1983) Angew. Chem. Int. Ed. Engl. <u>22</u>, 1012 (1983).
- (6) K. Kawahara, M. Matsumoto, H. Hashimoto and S. Miyano, Chem Lett. 1163 (1988)
- (7) R. E. Bozaz, W. E.Prater, R. Y. Hicks, J. Chem. Educ. <u>68</u>, 427 (1991)
- (8) T. Izumi, T. Hino and A. Kasachara, J. Chem. Technol. Biotechnol. <u>50</u>, 571 (1991)
- (9) H. Malghey and E. S. Hedenstrein, J. Org. Chem. <u>57</u>, 2052 (1992)
- (10) R. E. Lutz and A.Burger, U.S. NTIS, AD/A Rep. 1974, No 005268/8GA, Chem.Abstr 83, 90670 j (1975); Chem.Abstr. <u>115</u>, 98988n (1991).
- (11) A.Campbell, C. S. Franklin and E. N. Morgan, J. Chem. Soc. 1145 (1958)
- (12) U.Kazutoshi, E. Konichi and Y. Takeshi, Enzyme Microb. Technol. 13, 834 (1991)
- (13) L. Ia. Leitis and M. V. Shimanskaya, Zh. Prikl. Khim. 53, 917 (1980)
- T. Ishikawa and Y. Mukohara, Jpn. Kokai Tokkyo Koho, Jp 05, 276, 968 26, Chem. Abstr. <u>120</u>, 161784 (1994)
- (15) A. P. Phillips, J. Am. Chem. Soc. <u>68</u>, 2568 (1946)
- (16) R. M. Forbis and K. L. Reinhert, J. Am. Chem. Soc. <u>95</u>, 5003 (1973)
- (17) M. Ferles, O. Kocian, Collect. Czech. Chem. Commun. <u>46</u>, 1518 (1981)
- (18) C. Tashiro and T. Sakuragi, Jpn. Kokai Jp. 7312, 747, Chem. Abstr. <u>79</u>, P31938x (1973)
- (19) Y. Watanabe, Jpn. Kokai Tokkyo Koho Jp.62, 106, 078, Chem. Abstr. <u>108</u>, 150312r (1988)
- (20) C. E. Kaslow and W. R. Clark, J. Org. Chem. <u>18</u>, 55 (1953)
- (21) L. A. Korosteleva, A. N. Kost, L. I. Modyenova, L. V. Melyanora, P. B. Terentev. S. Kulikov, Prikl. Biokhim. Mikrobiol., 1981, <u>17</u>, 380 (1981), Chem. Abstr. <u>95</u>, 57803e (1981)
- (22) F. Minishi, F Bertini, R. Galli and N. Perochinunno, Ital. 918, 225, C. A. 84, 180080m (1976)
- (23) V. Crocq, C. Masson, J. Winter, C. Richard, G.Lemaitre, J. Lenay, M.Vivant, J. Bueridio and G. Prat, Organic Process Research & Development <u>1</u>, 2 (1997)
- (24) O. Tsuge, M. Nishinohara and M. Tashiro, Bull. Chem. Soc. Jpn. <u>36</u>, 1477 (1963)
- (25) N. P. Bun-Hoi, N, Hoan, J. Chem. Soc. 1951, 1834; C. Bodea, V. Fărcăsan, I. Oprean, Rev. Roumaine Chem. <u>10</u>, 1103 (1965)

Received on April 24, 1999